
Description

The **WBC252-01GD** Bone Conduction Microphone is a high performance accelerometer optimized for picking up wearers' own voice, using bone conduction and/or pressure generated in the ear canal. Picking up the voice by bone-vibration results in a signal with high own voice to ambient sound ratio.

Top View

Bottom view

Fig. 1 Bone Conduction Microphone block diagram

Key Features

- ♦ Size of 3.5x2.65x1.30mm
- High vibration sensitivity with ultra-low noise
- ♦ Optimized for picking up users' voice
- Power consumption optimized for battery operated applications
- ♦ Compatible with Standard SMD Reflow Technology
- ♦ RoHS Compliance & Halogen Free

Typical Applications

- Acoustic wearzble devices, also known as hearables
- Noise reduction for mobile phones
- ♦ Hearing aids
- ♦ Bone and joint detection. Health tracking
- Equipment movement status tracking

Maximum Ratings

Stresses at the maximum ratings shown in Table 1 may cause permanent damage to the device. These are stress ratings only at which the device may not function when an operation at these or any other condition beyond those specified under "Electro-Acoustic Specifications".

Table	1	Maximum	Ratings
Iabic		WIGAIIIIGIII	Naumys

Parameter	Maximum Ratings	Unit
Supply voltage	4.2	V
Operation temperature range	-40~85	${\mathbb C}$
Storage temperature range	-40~100	${\mathbb C}$

Electro-Acoustic Specifications

Table 2 Electrical Specifications

Test condition: +25±2°C, 60%~70% RH, 86~106Kpa, Vdd=2V, no load, unless otherwise specified.

No.	Parameter	Symbol	Condition	Min.	Nom.	Max.	Unit
1	Operating Voltage	V _{DD}		1.6	2	3.6	٧
2	Sensitivity (Z direction)	S	f=1KHz, g _{in} =1g, 0dB=1V/g, single output	-27	-25	-23	dBV/g
3	Equivalent noise	N _{rms}	BW=100~4kHz, A-weighted		-98		dBV
	SNR Ratio	S/N	BW=100~4kHz, A-weighted		73		dBA
			@250Hz			6	ug/√Hz
4	Noise density	N _{densitiy}	@1kHz			3	ug/√Hz
			@2kHz			2	ug/√Hz
_	5 Acoustic Sensitivity Loss	ASL	94dBSPL, @100Hz	40			dB
5			94dBSPL, @1kHz	30			dB
6	Acceleration level	AL	THD <10% @1kHz		4		g
7	Output Impedance	Z _{OUT}	f=1KHz			400	Ω
8	Current Consumption	I	1.6 V to 3.6V		120	200	μA
9	DC output	VDC		0.7	0.85	1	٧
10	Outrot land	C _{load}				150	pF
10	10 Output load	R _{load}		10		100	ΚΩ

Note: Frequency response, sensitivity and current consumption are tested by 100% on product line.

Performance Curves

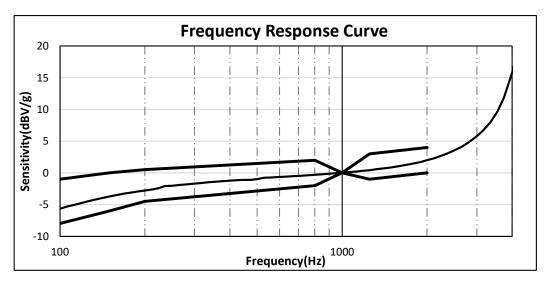


Fig.2 Frequency response curve normalized to 1KHz

Frequency(Hz)	100	150	200	800	1000	1250	2000
Upper Limit	-1	0	0.5	2	0	3	4
Lower Limit	-8	-6	-4.5	-2	0	-1	0

Measurement System Setup

Test signal: Sinusoid, Sweep,

Step: 1/12 octave

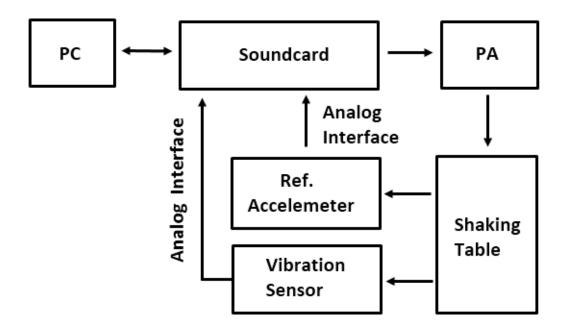


Fig. 3 Measurement System Setup

Typical Application Circuit

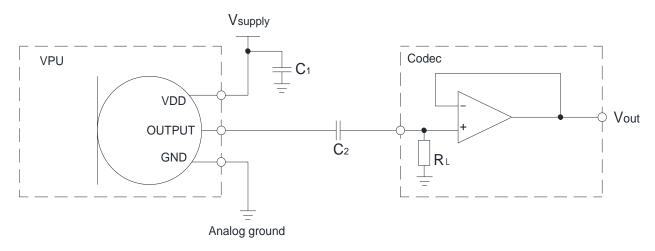


Fig. 4 Typical Application Circuit

Power supply decoupling:

A 0.1uF ceramic type decoupling capacitor C₁ is strongly recommended for every microphone and it should be placed as close to the VDD pad to reduce the noise on power supply;

The trace connected to each pad of capacitor should be as short as possible, and should stay on one layer of PCB without via. For the best performance, recommend to place the capacitor equidistance from power and ground pins of microphone, or slightly closer to the power pin if space not allowed. System ground should connect to far side of the capacitor, as shown in fig.10.

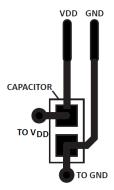
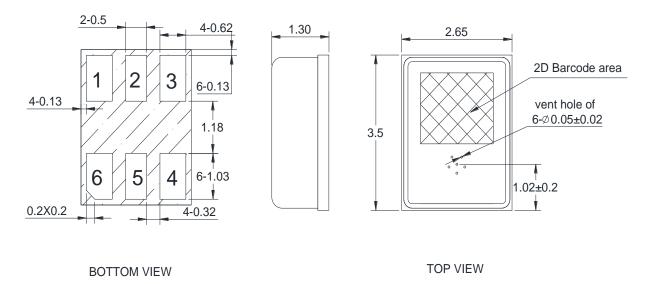


Fig. 5 Recommended Power Supply Decoupling Capacitor Layout

Low frequency roll-off:


DC-blocking capacitor C_2 is required on the output signal line. The 3-dB cut-off frequency can be calculated using follow equation which is related to DC-blocking capacitor C_2 and input resistance of the amplifier.

3dB cut-off frequency=1/2πR_LC₂

In order to get a cut-off frequency below 20 Hz, minimum 1uF value of C_2 and minimum 20K Ω value of input resistance of the amplifier is recommended.

Mechanical Specifications

Unit: mm Unmarked Tolerance: ± 0.1 (mm)

Fig. 6 Dimension

Item	Dimension	Tolerance
Length	3.50	±0.1
Width	2.65	±0.1
Height	1.30	±0.1

PIN	Definition	Description
1	GND	Ground
2	GND	Ground
3	GND	Ground
4	Output	Signal Output
5	GND	Ground
6	VDD	Power Supply

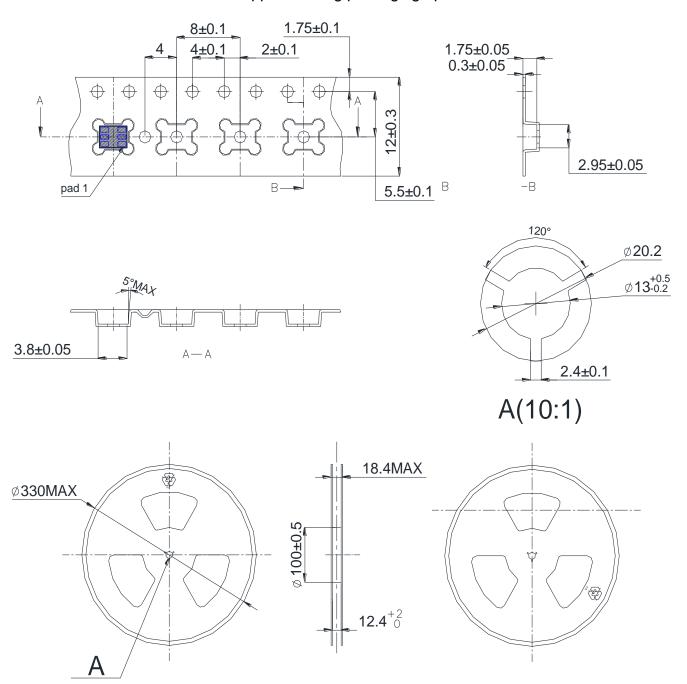
Note:

- All Ground Pin must be connected to the ground in end application
- Please do not seal vent hole during reflow, and seal vent hole after reflow process and keep sealed during application.

Reliability Specifications

After conducting any of the following tests, the sensitivity change of DUT shall be less than ±3dB from its initial value unless otherwise noted, and shall keep its initial operation and appearance.

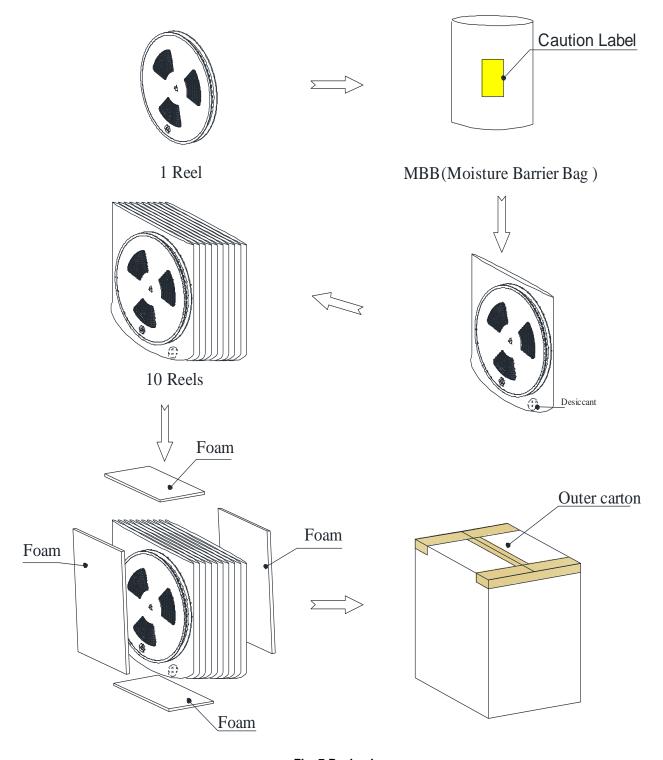
Table 3 Reliability Specifications

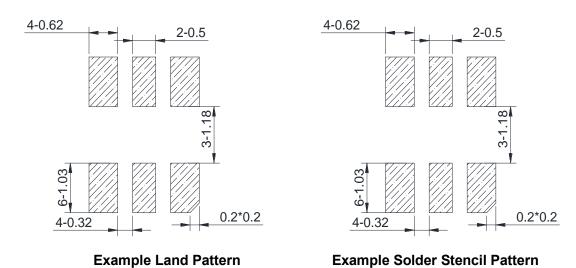

No.	Item	Test condition
1	Hi-Temperature Test	Temperature:+85□ Duration: 240 hours
2	Low-Temperature Test	Temperature:-40□ Duration: 240 hours
3	Humidity & Heat operating Test	Temperature: +70°C Humidity: 93% RH Duration: 240 hours
4	Thermal Shocking Test	Temperature & Duration: -40° C, 30 minutes Temperature & Duration: $+80^{\circ}$ C, 30 minutes, Cycles: 32 cycles
5	Vibration Test	Frequency:10-55Hz Amplitude: 1.52mm Direction: 2 directions Duration: 2 hours
6	Drop Test	Drop the microphones to the floor without package. Height:1.5m Reference Surface: slippery marble floor Duration: 5 times
7	Electrostatic Discharge	The tests are performed acc. to IEC61000-4-3: a. Contact Discharge Discharge Position: Output of Microphone Charge Voltage: ±6000VDC Discharge Network: 150pF & 330Ω b. Air Discharge Discharge Position: Sound Hole Charge Voltage:±8000VDC Discharge Network: 150pF & 330Ω

Packaging Details

Use ESD reel and tape for microphone packaging.

* Anti-static measures should be applied during packaging operation.




Fig. 7 Packaging

Tape and Reel	φ330mm	4,500PCS×1=4,500PCS
Shipping Box	215mm*370mm*370mm	4,500PCS×10=45,000PCS

Application Design Suggestions

Recommended PCB and Stencil Design Pattern

Notes:

- Dimensions are in millimeters unless otherwise specified.
- Tolerance is ± 0.1 mm unless otherwise specified.

Temperature Profile during Reflow Process

Table 4 Temperature Profile during Reflow Process

Parameter		Reference	Specification
Average Ramp Rate		T_L to T_P	3°C/sec max
Minimum Temperature		T _{SMIN}	150°C
Preheat	Maximum Temperature	T _{SMAX}	200°C
	Time T _{SMIN} to T _{SMAX}	t _S	60 sec to 180 sec
Ramp-Up Rate		T _{SMAX} to T _L	1.25°C/sec
Time Maintained Above Liquidous		t _L	60 sec to 150 sec
Liquidous Temperature		TL	217°C
Peak Temperature		T _P	260°C
Time Within +5°C of Actual Peak Temperature		t _P	20 sec to 40 sec
Ramp-Down Rate		T _P to T _{SMAX}	6°C/sec max
Time +25°C (t25°C) to Peak Temperature			8 min max

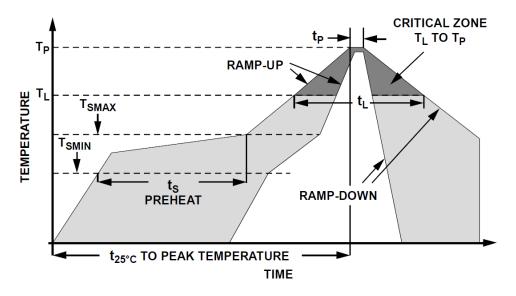


Fig. 8 Reflow Profile

Additional Notes:

- After the initial reflow, the MIC shall be resumed to room temperature if more reflow is needed.
- No more than 3 times reflow is recommended.
- Do not board wash by liquid or ultrasonic after the reflow process.
- Do not pull a vacuum over vent hole of the microphone.
- Do not insert any object in port hole of device at any time
- Suggest SMT the microphone at last time if double side PCBA used.
- If there is any leakage risk, the peak temperature should be set to less than 240°C or more than 255°C.

Special Cautions

Package

Do not store the remained material with the vacuum seal static bags.

Storage

The component needs to meet the requirement of MSL(Moisture Sensitivity Level) class 1. Please keep MICs in warehouse with humidity less than 75% and without sudden temperature change, acid air, and any other harmful air or strong magnetic field.

Please protect products against moist, shock, sunburn and pressure.

Please take proper measures against ESD in the process of assembly and transportation.

Please use the shipping package for long-term storage.

Discard

For microphones to be wasted, customer shall follow the regulation of Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC).

Specification Revisions

Date	Version	Description
01-25-2025	V1.0	Preliminary
04-03-2025	V2.0	Updated SNR performance