

Hearing Aids Mems Mic

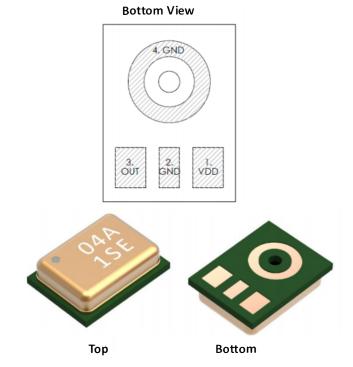
DESCRIPTION

The WBC3526ES35is a high q**U**ality, low voltage, low p ower analog output bottom ported omni-directional M6MSophone. WBC3526ES3Sonsists of a MEMSmicrop hone element and an preamplifier. WBC3526ES35has a high SNR and flat wideband frequency response, res ulting in natural sound with high intelli**G**ibility. Extra EMI filter for RF noise attenuation is built inside. D

ue to the built in filter, WBC3526ES35shows high immu nity to EMI.

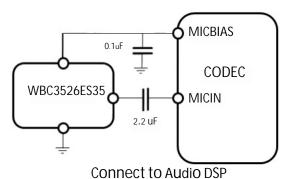
The WBC3526ES35is available in a thin 3.35mm×2.50mm× 0.96mm surface-mount package. It is reflow solder co mpatible wth no sensitivity degradation. The WBC3526ES35is Halogen and Lead free.

APPLICATIONS


ORDERING INFORMATION

PART	RoHS	Ship, Quantity
WBC3526ES35	Yes	Tape and Reel,1K

FEATURES


- Small package
- Flat Frequency Response SNR of 69dBA
- Low Current
- Ultra-Stable Performance
- Standard SMD Reflow
- Omni-directional

Pins Configuration and Description

Typical Applications

The WBC3526ES35output can be connected to a codec microphone input or to a high input impedance ga in stage. A deblocking capacitor is required at the output of the miCrophone.

Note:

All Ground pins must be connected to ground. Capacitors near the miCrophone should not contain Class 2 dielec

trics.

Absolute Maximum Ratings

V _{DD} to Ground	–0.5V to +5.0V
Out to Ground	–0.3V to V _{DD} +0.3
Input Current	±5mA
Operating Temperature Range	–40°C to +125°C
Storage Temperature Range	–40°C to +125°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Functional Block Diagram

Electro-Static Discharge Sensitivity

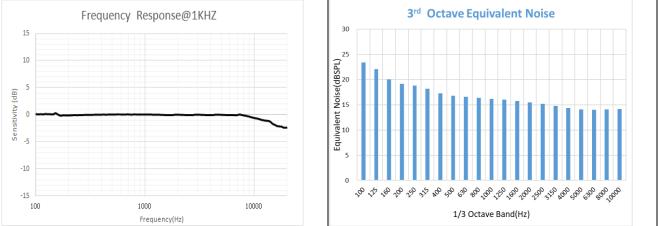
This integrated circuit can be damaged by ESD. It is recommended that all integrated circuits be handled with proper precautions. Failure

to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure.

Pins Description

Pin	Symbol	Description
1	VDD Power Supply.	
2	GND	Ground
3	OUT	Analog output signal.
4	GND	Ground

Specifications

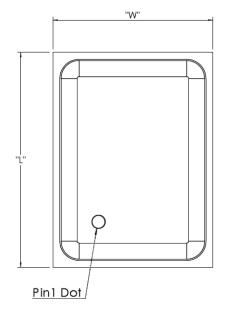

(TA = +23°C, VDD = +0.9V, R.H. = 60%~70%, no load, VDD Decoupling cap=0.1uF unless otherwise noted.)

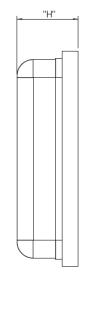
PARAMETER	Symbol	CONDITIONS	MIN	ТҮР	MAX	UNIT
Supply Voltage ¹	VDD		0.9	-	3.6	V
Supply Current ^{1,2}	IDD		-	19		μA
Sensitivity ¹	S	94 dB SPL @ 1 kHz	-36	-35	-34	dBV/Pa
Signal to Noise Ratio	SNR	94 dB SPL @ 1 kHz	-	69	-	dB(A)
Equivalent Input Noise	EIN			25		dBA SPL
Total Harmonic Distortion	THD	110 dB SPL @ 1 kHz,	-	-	0.5	%
Acoustic Overload Point	AOP	10% THD @ 1KHz		120		dBSPL
Power Supply Rejection Ratio	PSRR	200mVpp sinewave @ 1 kHz, VDD = 0.9V	-	75	-	dB
DC Output		VDD = 0.9V	-	0.65	-	V
Output Impedance	Z _{OUT}	@ 1 kHz	-	4000	-	Ω
Directivity			Omni-directional		•	
Polarity		Increasing sound pressure	Increasing output pressure			
1						

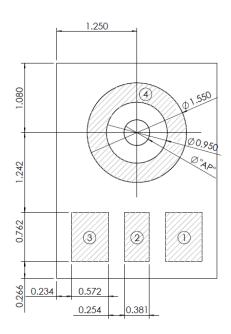
¹100% tested

 2 Maximum specifications are measured at maximum V_{DD}. Typical specifications are measured at V_{DD} = 0.9V.

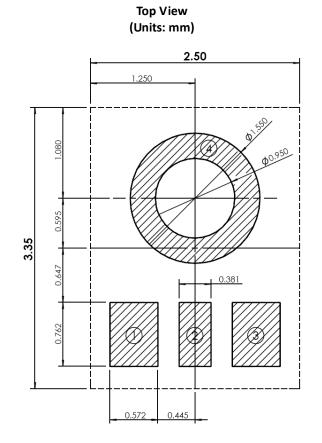
Typical Performance Characteristics


Reliability Specifications


The microphone sensitivity after stress must deviate by no more than ±3dB from the initial value.

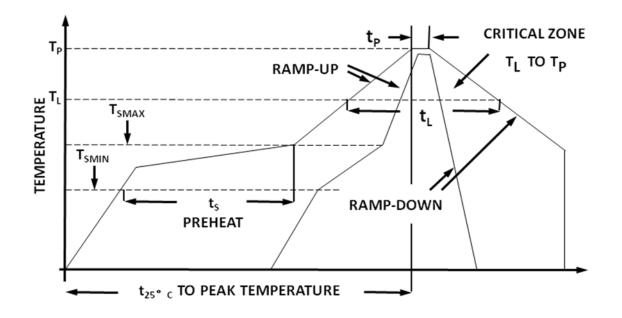

1 Heat Test One actional	T 425 + 2.00
1. Heat Test, Operational	Temperature: 125±3 °C
	Duration: 1000 hours
	Voltage: Applied
2. Cold Test, Operational	Temperature: -40±3°C
	Duration: 1000 hours
	Voltage: Applied
3. Heat Test, Non-Operational	Temperature: 125±3°C
	Duration: 1000 hours
	Voltage: Not Applied
4. Cold Test, Non-Operational	Temperature: -40±3°C
	Duration:1000 hours
	Voltage: Not Applied
5. Thermal Shock Test, Non-Operational	Temperature: -40±3°C and 125±3°C
	Duration: 30 minutes each, during 5
	minutes ramp, 256 cycles
	Voltage: Not applied
6. Temperature humidity storage	Temperature: 85±3°C
	Humidity: 85±3%RH
	Duration: 1000 hours
	Temperature: 65±3°C
	Humidity: 95±3%RH
	Duration: 168 hours
7. Free Fall Test 1.5m	Placed inside test fixture and dropped on
	concrete from height 1.5m.
	4 times by each surface and corner
8. Vibration	4 cycles of 20 to 2000 Hz sinusoidal sweep
	with 20G peak acceleration lasting 12
	minutes in X, Y, and Z directions
9. Mechanical Shock	5 pulses of 10000g in each of the $\pm X$, $\pm Y$,
	-
	and ±Z directions
10. Electrostatic Discharge Test	Capacitance: 150pF
	Resistance: 330Ω
	Duration: 10 times
	Air Discharge: Level 4(+/-15kV)
	Direct contact discharge: Level 4 (+/-8kV)
11. Human Body Mode	±5000 Volt
12. Charged-Device Model	±500 Volt
13. Reflow	5 reflow cycles with peak temperature of
	260°C
14. Solderability	245 ± 5 °C ,5sec, 95% Tin on pad surface
15. Tumble test	
	300 tumbles from a height of 1m onto a steel
	base.
16. HAST	Temperature: 130±3°C
	Humidity: 85±3%RH
	Duration: 96 hours
	Voltage: Applied
17. Air Blow	0.45MPa, distance 3cm, time 10s

MECHANICAL SPECIFICATIONS


ltem	Dimension	Tolerance
Length (L)	3.35	±0.10
Width (W)	2.50	±0.10
Height (H)	0.96	±0.10
Acoustic Port (AP)	Ø0.40	±0.05

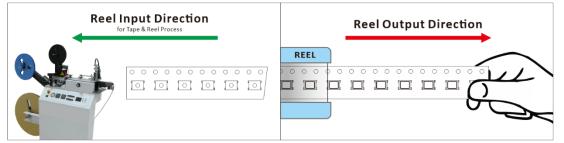
Pin#	Pin Name	Туре	Description
1	VDD	Power	Power Supply
2	GROUND	Ground	Ground
3	OUT	Output	Analog output signal.
4	GROUND	Ground	Ground

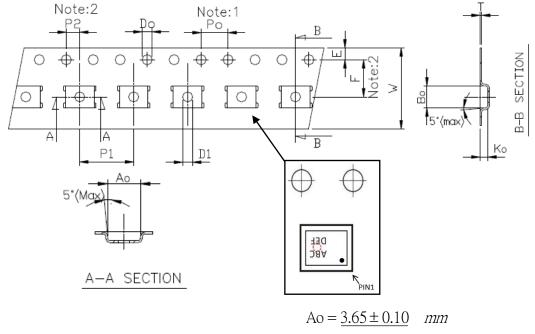
RECOMMENDED CUSTOMER LAND PATTERN


The recommended PCB land pattern for the WBC3526ES35should have a 1:1 ratio to the solder pads on the microph one package. Care should be taken to avoid applying solder paste to the sound hole in PCB. The dimensions of sugge sted solder paste pattern refer to the land pattern.

SOLDER FLOW PROFILE

The reflow profile specified in this section describes expected maximum heat exposure of components during the reflow process of NMP product PWBs. Temperature is measured on top of component. All components have to tolerate at least this profile five times (5x) without affecting electrical performance, mechanical performance or reliability.


Pb-free reflow profile requirements for soldering heat resistance:


Parameter		Reference	Pb-Free
Average Ramp Rate		TL to TP	3°C/sec max
	Minimum Temperature	T _{SMIN}	150°C
Preheat	Maximum Temperature	T _{SMAX}	200°C
Time		T _{SMIN} to T _{SMAX}	60sec to 180sec
Time Maintained About		TL	217°C
Time Maintained Above	Time	tL	60sec to 150sec
Peak Temperature		ТР	260°C
Time Within +5°C of Actua	al Peak Temperature	t₽	20 sec to 40 sec
Ramp-Down Rate		T _{peak}	6°C/sec max
Time +25 ^o C (t _{25oc}) to Peak Temperature			8 min max

ADDIOTIONAL NOTES: MSL(moisture sensitivity level) Class 1.

PACKAGING

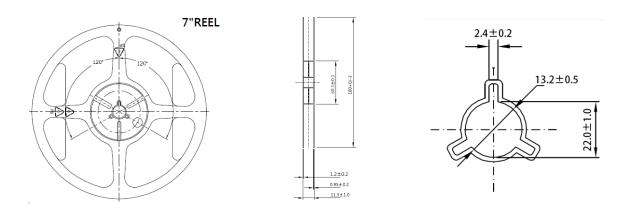
$A0 = 3.65 \pm 0.10$	mm
$Bo = 2.75 \pm 0.10$	mm
$Ko = 1.25 \pm 0.10$	mm

Unit : mm

Symbol	Spec.
K1	-
Po	4.0 ± 0.10
P1	8.0 ± 0.10
P2	2.0 ± 0.05
Do	1.55 ± 0.05
D1	1.50 (MIN)
E	1.75 ± 0.10
F	5.50 ± 0.05
10Po	40.0 ± 0.10
W	12.0 ± 0.20
Т	0.30 ± 0.05

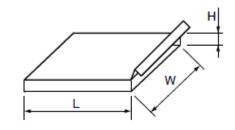
Notice :

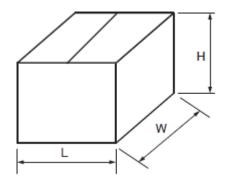
 $1 \cdot 10$ Sprocket hole pitch cumulative tolerance is ± 0.1 mm.


 $2\,\cdot\,$ Pocket position relative to sprocket hole measured as true position of pocket not pocket hole.

 $3\,\cdot\,A_0$ & B_0 measured on a place 0.3mm above the bottom of the pocket to top surface of the carrier.

 $4\cdot K_0$ measured from a plane on the inside bottom of the pocket to the top surface of the carrier.


5 · Carrier camber shall be not that 1mm per 100mm through a length of 250mm.


Part NO.	Reel Diameter	Quantity Per Reel	Quantity Per Inner Box	Quantity Per Outer Box
WBC3526ES35	7"	1K	1К	10K

Dimensions for Inner Box

Unit : mm				
L	W	Н		
190	190	30		

Dimensions for Outer Box

Unit:mm

L	W	н
445	360	372