

WBC4030DT26TJ0

Top port digital silicon Microphone

Descriptions

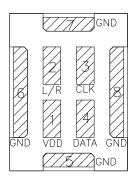
WBC4030DT26TJ0is a Silicon Microphone with digital output and top inlet for sound input. It consists of a MEMS sensor and an encoder IC. It converts sensor analog output signal into 1 -bit digital PDM data. The digital output format eliminates AC coupling capacitor, reduces RF noise coupling and eases PCB layout requirement.

WBC4030DT26TJ0 is a cost-effective alternative to traditional electret condenser microphone (ECM). Provided on tap-and-reel, it is ideally suited for high volume applications and it can be processed directly to customer's PCB using standard automatic pick-and-place equipment and surface mounted via standard solder reflow equipment.

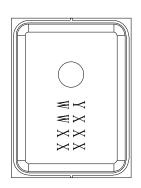
WBC4030DT26TJ0 can be used to implement the array microphones. Speech quality can be significantly improved by combining two microphones.

The WBC4030DT26TJ0is manufactured in a compact 4.00mm*3.00mm*1.00mm, 8-pin package.

Features


- PDM OutputHigh SNR
- Multiple performance modes
- Ultra-Stable Performance
- Standard SMD Reflow
- RoHS/Halogen free compliant
- Omnidirectional

Applications


- Smart phonesSmart speakers
- Portable communication device
- Notebook and desktop
- Digital still cameras
- Portable music recorders

Product appearance

Pin configuration (Bottom view)

Marking (Top view)

Y = Year code WW = Week code X X X = Batch code

Order information

Device	Package(mm)	Shipping
WBC4030DT26TJ0-8/TF	R 4.00*3.00*1.00	5000/Reel&Tape

Absolute Maximum Ratings

Parameter	Maximum Ratings	Unit
Power supply voltage	6.5	V
Operation temperature range	-40~85	$^{\circ}$
Storage temperature range	-40~125	${\mathbb C}$

Stresses at the maximum ratings shown in Table 1 may cause permanent damage to the device. These are stress ratings only at which the device may not function when an operation at these or any other condition beyond those specified under "Electro-Acoustic Specifications".

Acoustic & Electrical Specifications

Normal Mode Electrical Specifications

Test condition: $+25\pm2^{\circ}$ C, $60\%\sim70\%$ RH, $86\sim106$ Kpa, F_{CLK}=2.4MHz, V_{DD}=1.8V, no load, unless otherwise noted.

Symbol	Description	Min.	Тур.	Max.	Units
FCLK	Clock Frequency	1.3	2.4	4.8	MHz
I _{DD}	Supply Current ¹	-	770	900	uA
S	Sensitivity³, 94dB SPL@1KHz	-27	-26	-25	dBFS ²
	20-5KHz Bandwidth, A-weighted	-	60	-	
SNR	20-10KHz Bandwidth, A-weighted	-	59	-	dB(A)
	20-20KHz Bandwidth, A-weighted	-	58	-	
THD	94dB SPL@1KHz	-	0.1	0.5	%
AOP	10%THD@1KHz	-	120		dBSPL
PSR	Measured with 217Hz,100mVpp square wave	-	-90	-80	dBFS
PSRR	Measured with 1KHz,200mVpp sinewave	-	60	-	dBFS

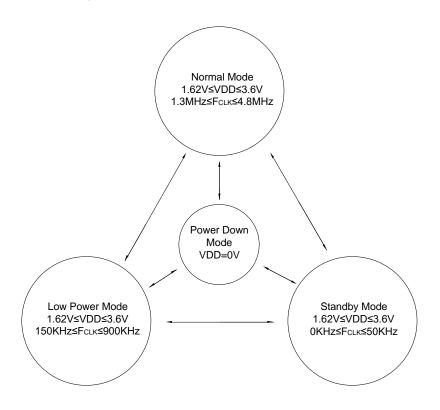
Low Power Mode Electrical Specifications

Test condition: $+25\pm2^{\circ}$ C, $60\%\sim70\%$ RH, $86\sim106$ Kpa, F_{CLK}=768KHz, V_{DD}=1.8V, no load, unless otherwise noted.

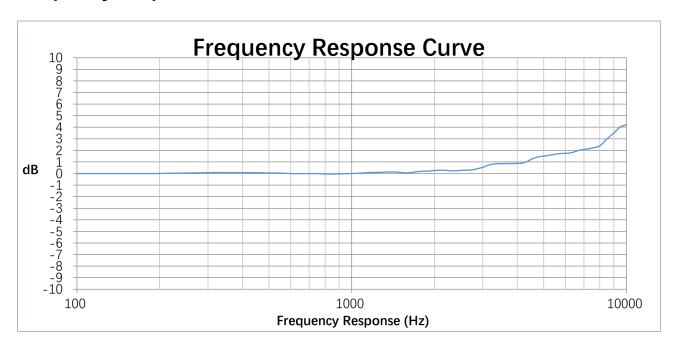
Symbol	Description	Min.	Тур.	Max.	Units
FCLK	Clock Frequency	150	768	900	KHz

I _{DD}	Supply Current	-	340	450	uA
S	Sensitivity, 94dB SPL@1KHz	-27	-26	-25	dBFS
SNR	20Hz~8KHz Bandwidth, A-weighted	-	56	-	dB(A)
THD	94dB SPL@1KHz	-	0.15	0.5	%
AOP	10%THD@1KHz	-	120	-	dBSPL
PSR	Measured with 217Hz, 100mV _{pp} square wave	-	-90	-80	dBFS
PSRR	Measured with 1KHz,200mVpp sinewave	-	60	-	dBFS

- Note 1: The current consumption depends on the applied clock frequency and the load on the DATA output
- Note 2: dBFS=20*logA/B, where A is the level of signal, and B is the level that corresponds to full-scale level
- Note 3: Relative to the rms level of a sine wave with positive amplitude equal to100%1s density and Negative amplitude equal to 0% 1s density
- Note 4: Frequency response, sensitivity and current consumption are tested by 100% on product line.


General Electrical Specifications

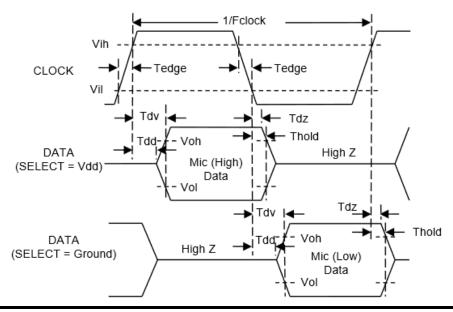
Test condition: +25 \pm 2°C, 60% \sim 70% RH, 86 \sim 106Kpa, no load, unless otherwise noted.


Symbol	Description		Min.	Тур.	Max.	Units
V _{DD}	Supply Voltage		1.62	1.8	3.6	V
ISLEEP	Power Consumption of FCLK<50KHzor CLK OF		-	6	50	uA
		Standby Mode	-	-	50	KHz
FCLK	Clock Frequency	Low Power Mode	150	768	900	KHz
		Normal Mode	1.3	2.4	4.8	MHz
Data Format			1/2 Cycl	e PDM		
Directivity			Omni-directional			
Polarity	Increasing sound pressure		Increasi	ng density	of 1's	
Isc	Short circuit current, Gro	ounded DATA	1	-	20	mA
CLOAD	Load capacitance	Load capacitance		-	100	pF
Reset time	Time to start up in any mode after VDD has been off for more than 10ms, while CLOCK remained on		-	-	20	ms
Start-up time	Start-up into normal mode or LP mode		-	-	20	ms
Mode-switch time	Mode-switch Normal mode mode to Normal mode	ode to LP mode or LP	-	-	20	ms

Microphone State Diagram

Frequency Response Curve

Application Informations

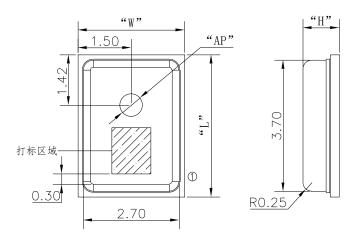


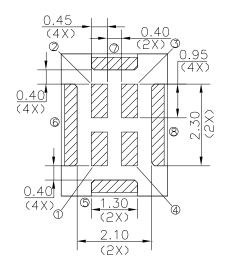
Microphone	SELECT	Asserts DATA On	Latch DATA On
Mic (High)	V_{DD}	Rising Clock Edge	Falling Clock Edge
Mic (Low)	GND	Falling Clock Edge	Rising Clock Edge

Note:

- All GND pins must be connected to ground.
- Capacitors near the microphone should not contain Class 2 dielectrics.

Clock Timing Diagram



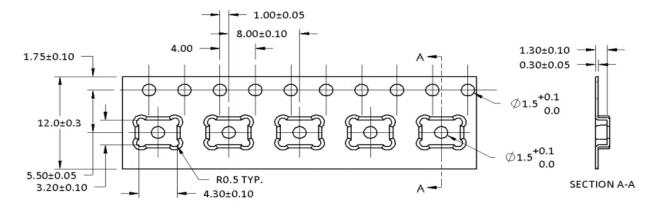

Timing Characteristics

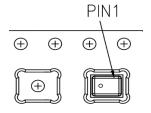
Parameter	Symbo	Min.	Тур.	Max.	Unit	Note
Clock duty cycle	-	40	50	60	%	-
Operation Voltage	V_{DD}	1.62	-	3.6	V	-
Input Logic Low Level	VIL	-0.3	-	0.35×V _{DD}	V	-
Input Logic High Level	V _{IH}	0.65×V _{DD}	•	V _{DD} +0.3	٧	-
Output Logic Low Level	V _{OL}	-	ı	0.45	٧	-
Output Logic High Level	V_{OH}	V _{DD} -0.45	-	-	V	-
Clock rise time	tcR	-	-	6	ns	35%~65%
Clock fall time	tcF	-	ı	6	ns	65%~35%
Delay time for data valid	t⊳v	40	-	100	ns	Delay time from clock edge(0.50 x VDD) to data valid(<v<sub>OL or > V_{OH})</v<sub>
Delay time for data driven	t _{DD}	25	ı	50	ns	Delay time from clock edge (50% VDD) to data driven.
Delay time for data high Z	t _{Hz}	5	-	20	ns	Delay time from clock edge(50% VDD) to data

Mechanical Specifications

Top View Side View Bottom View

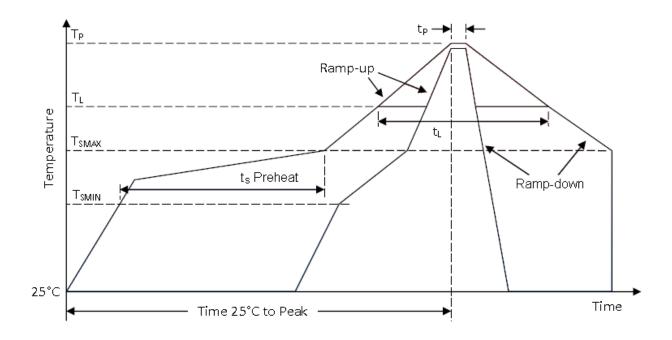
Item	Dimension	Tolerance
Length(L)	4.00	±0.10
Width(W)	3.00	±0.10
Height(H)	1.00	±0.10
Acoustic Port (AP)	Ø0.65	±0.05


Pin#	Pin Name	Description
1	VDD	Power Supply
2	SELECT	Lo/Hi (L/R) Select
2	SELECT	This pin is internally pulled low
3	CLOCK	Clock input
4	DATA	PDM Output
5	GND	GND
6	GND	GND
7	GND	GND
8	GND	GND


Notes:

- Dimensions are in millimeters unless otherwise specified.
- Tolerance is ±0.10mm unless otherwise specified.
- Pick Area only extends to 0.25 mm of any edge or hole unless otherwise specified.
- Suggestion to use the same date code microphone in one array microphone module.

Packaging & Marking Detail


Model Number	Reel Diameter	Quantity Per Reel
WBC4030DT26TJ0	13"	5,000

Notes:

- Dimensions are in millimeters unless otherwise specified.
- Vacuum pickup only in the pick area indicated in Mechanical Specifications.
- Tape & reel per EIA-481.
- Labels applied directly to reel and external package.

Referenced Reflow Profile

Profile Feature	Pb-Free
Average Ramp-up rate (Tsmax to Tp)	3°C/second max.
Preheat • Temperature Min (Tsmin) • Temperature Max (Tsmax) • Time (Tsmin to Tsmax) (ts)	150°C 200°C 60-180 seconds
Time maintained above: • Temperature (TL) • Time (tL)	217°C 60-150 seconds
Peak Temperature (T _P)	260°C
Time within 5°C of actual Peak Temperature (t₁)	20-40 seconds
Ramp-down rate (TP to TSMAX)	6°C/second max
Time 25°C to Peak Temperature	8 minutes max

Note:

All temperatures refer to topside of the package, measured on the package body surface.

Additional Notes

- (A) Maximum of 3 reflow cycles is recommended.
- (B) In order to minimize device damage:
 - Do not board wash or clean after the reflow process.
 - Do not brush board with or without solvents after the reflow process.
 - Do not directly expose to ultrasonic processing, welding, or cleaning.
 - Do not insert any object in port hole of device at any time.
 - Do not apply over 30 psi of air pressure into the port hole.
 - Do not pull a vacuum over port hole of the microphone.
 - Do not apply a vacuum when repacking into sealed bags at a rate faster than 0.5 atm/sec.

Materials Statement

Meets the requirements of the European RoHS and Halogen-Free.

Reliability Specifications

Test	Description
Thermal Shock	100 cycles air-to-air thermal shock from -40°C to +125°C with 15 minute soaks. (IEC 68-2-4)
High Temperature Storage	1000 hours at +105°C environment. (IEC 68-2-2 Test Ba)
Low Temperature Storage	1000 hours at -40°C environment. (IEC 68-2-2 Test Aa)
High Temperature Bias	1000 hours at +105°C under bias. (IEC 68-2-2 Test Ba)
Low Temperature Bias	1000 hours at -40°C under bias. (IEC 68-2-2 Test Aa)
Temperature / Humidity Bias	1000 hours at +85°C /85% R.H. under bias. (JESD22-A101A-B)
Vibration	4 cycles of 20 to 2,000 Hz sinusoidal sweep with 20g peak acceleration lasting 12
	minutes in X, Y, and Z directions. (Mil-Std-883E, method 2007.2 A)
ESD-HBM	3 discharges of ±3.5kV direct contact to I/O pins. (ESD STM5.2)
ESD-LID/GND	3 discharges of ±8 kV direct contact to lid while unit is grounded. (IEC 61000-4-2)
ESD-MM	3 discharges of ±200V direct contact to I/O pins. (ESD STM5.2)
Reflow	5 reflow cycles with peak temperature of +260°C.
Mechanical Shock	3 pulses of 10000g in the X, Y, and Z direction. (IEC 68-2-27, Test Ea)
Drop Test	To be no interference in operation after dropped to marble or 1.0cm steel plate
	18 times from 1.5 meter height.

Note:

After reliability tests are performed, the sensitivity of the microphones shall not deviate more than 3 dB from its initial value. (The measurement to be done after 2 hours of conditioning at 20 \pm 2 °C, R.H 60% \sim 70%)